Dendrite Self-Avoidance Requires Cell-Autonomous Slit/Robo Signaling in Cerebellar Purkinje Cells

نویسندگان

  • Daniel A. Gibson
  • Stephen Tymanskyj
  • Rachel C. Yuan
  • Haiwen C. Leung
  • Julie L. Lefebvre
  • Joshua R. Sanes
  • Alain Chédotal
  • Le Ma
چکیده

Dendrites from the same neuron usually develop nonoverlapping patterns by self-avoidance, a process requiring contact-dependent recognition and repulsion. Recent studies have implicated homophilic interactions of cell surface molecules, including Dscams and Pcdhgs, in self-recognition, but repulsive molecular mechanisms remain obscure. Here, we report a role for the secreted molecule Slit2 and its receptor Robo2 in self-avoidance of cerebellar Purkinje cells (PCs). Both molecules are highly expressed by PCs, and their deletion leads to excessive dendrite self-crossing without affecting arbor size and shape. This cell-autonomous function is supported by the boundary-establishing activity of Slit in culture and the phenotype rescue by membrane-associated Slit2 activities. Furthermore, genetic studies show that they act independently from Pcdhg-mediated recognition. Finally, PC-specific deletion of Robo2 is associated with motor behavior alterations. Thus, our study uncovers a local repulsive mechanism required for self-avoidance and demonstrates the molecular complexity at the cell surface in dendritic patterning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thyroid Hormone Induces PGC-1α during Dendritic Outgrowth in Mouse Cerebellar Purkinje Cells

Thyroid hormone 3,3',5-Triiodo-L-thyronine (T3) is essential for proper brain development. Perinatal loss of T3 causes severe growth defects in neurons and glia, including strong inhibition of dendrite formation in Purkinje cells in the cerebellar cortex. Here we show that T3 promotes dendritic outgrowth of Purkinje cells through induction of peroxisome proliferator-activated receptor gamma (PP...

متن کامل

Heparan Sulfate Proteoglycan Syndecan Promotes Axonal and Myotube Guidance by Slit/Robo Signaling

Slit, the ligand for the Roundabout (Robo) receptors, is secreted from midline cells of the Drosophila central nervous system (CNS). It acts as a short-range repellent that controls midline crossing of axons and allows growth cones to select specific pathways along each side of the midline. In addition, Slit directs the migration of muscle precursors and ventral branches of the tracheal system,...

متن کامل

Neurodevelopment. Dendrite morphogenesis depends on relative levels of NT-3/TrkC signaling.

Neurotrophins regulate diverse aspects of neuronal development and plasticity, but their precise in vivo functions during neural circuit assembly in the central brain remain unclear. We show that the neurotrophin receptor tropomyosin-related kinase C (TrkC) is required for dendritic growth and branching of mouse cerebellar Purkinje cells. Sparse TrkC knockout reduced dendrite complexity, but gl...

متن کامل

A molecular mechanism for the heparan sulfate dependence of slit-robo signaling.

Slit is a large secreted protein that provides important guidance cues in the developing nervous system and in other organs. Signaling by Slit requires two receptors, Robo transmembrane proteins and heparan sulfate (HS) proteoglycans. How HS controls Slit-Robo signaling is unclear. Here we show that the second leucine-rich repeat domain (D2) of Slit, which mediates binding to Robo receptors, al...

متن کامل

Stereological Estimation of Granule Cell Number and Purkinje Cell Volume in the Cerebellum of Noise-Exposed Young Rat

In spite of the existing reports on behavioural and biochemical changes related to the cerebellum due to noise stress, not much is known about the effect of noise stress on the neuronal changes in the cerebellum. The present study aims at investigating the effects from one week noise exposure on granule cell number and Purkinje cell volume within the neonate rat cerebellum.15-day-old male Wista...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 81  شماره 

صفحات  -

تاریخ انتشار 2014